skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shiraiwa, Manabu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Burning plastic waste releases massive amounts of atmospheric particulate matter (PM), but its chemical composition and health-related properties are largely unelucidated. Here we characterize chemical composition of PM generated from burning common types of plastics and quantify reactive oxygen/chlorine species and PM oxidative potential (OP). We find that plastic burning PM contains high levels of environmentally persistent free radicals (EPFRs), transition metals, and polycyclic aromatic hydrocarbons. In the aqueous phase, PM generates hydrogen peroxide, •OH radicals, and carbon-centered organic radicals, exhibiting high levels of OP as characterized by dithiothreitol (DTT) and OH assays. Remarkably, plastic burning PM is associated with high concentrations of hypochlorous acid. Kinetic model simulations demonstrate that the PM respiratory deposition leads to •OH formation via complex redox reactions among its constituents and antioxidants in lung lining fluid. Our study highlights significant atmospheric and health implications for unregulated plastic burning, particularly common in many areas of developing countries. 
    more » « less
  2. The high levels of sulfate in wintertime particles in Fairbanks, Alaska, are a subject of keen research interest and regulatory concern. Recent results from the 2022 Alaska Layered Pollution And Chemical Analysis (ALPACA) field campaign indicate that roughly 40 % of wintertime sulfate in Fairbanks is secondary, with hydrogen peroxide (HOOH) the dominant oxidant. Since formation of HOOH in the gas phase should be negligible during ALPACA because of high levels of NOx, we examined whether reactions within particles could be a significant source of HOOH. To test this, we collected particulate matter (PM) samples during the ALPACA campaign, extracted them, illuminated them with simulated sunlight, and measured HOOH production. Aqueous extracts showed significant light absorption, a result of brown carbon (BrC) from sources such as residential wood combustion. Photoformation rates of HOOH in the PM extracts (PMEs; normalized to Fairbanks winter sunlight) range from 6 to 71 µM/h. While light absorption is nearly independent of pH, HOOH formation rates decrease with increasing pH. Extrapolating to the concentrated conditions of aerosol liquid water (ALW) gives an average rate of in-particle HOOH formation of ∼ 0.1 M/h. Corresponding rates of sulfate formation from particle-produced HOOH are 0.05–0.5 µg/m3/h, accounting for a significant portion of the secondary sulfate production rate. Our results show that HOOH formed in particles makes an important contribution to sulfate formation in ambient wintertime particles, even under the low actinic flux conditions typical of winter in subarctic locations like Fairbanks. 
    more » « less
    Free, publicly-accessible full text available May 19, 2026
  3. Free, publicly-accessible full text available December 13, 2025
  4. Abstract. Subarctic cities notoriously experience severe winter pollution episodes with fine particle (PM2.5) concentrations above 35 µg m−3, the US Environmental Protection Agency (EPA) 24 h standard. While winter sources of primary particles in Fairbanks, Alaska, have been studied, the chemistry driving secondary particle formation is elusive. Biomass burning is a major source of wintertime primary particles, making the PM2.5 rich in light-absorbing brown carbon (BrC). When BrC absorbs sunlight, it produces photooxidants – reactive species potentially important for secondary sulfate and secondary organic aerosol formation – yet photooxidant measurements in high-latitude PM2.5 remain scarce. During the winter of 2022 Alaskan Layered Pollution And Chemical Analysis (ALPACA) field campaign in Fairbanks, we collected PM filters, extracted the filters into water, and exposed the extracts to simulated sunlight to characterize the production of three photooxidants: oxidizing triplet excited states of BrC, singlet molecular oxygen, and hydroxyl radical. Next, we used our measurements to model photooxidant production in highly concentrated aerosol liquid water. While conventional wisdom indicates photochemistry is limited during high-latitude winters, we find that BrC photochemistry is significant: we predict high triplet and singlet oxygen daytime particle concentrations up to 2×10-12 and 3×10-11 M, respectively, with moderate hydroxyl radical concentrations up to 5×10-15 M. Although our modeling predicts that triplets account for 0.4 %–10 % of daytime secondary sulfate formation, particle photochemistry cumulatively dominates, generating 76 % of daytime secondary sulfate formation, largely due to in-particle hydrogen peroxide, which contributes 25 %–54 %. Finally, we estimate triplet production rates year-round, revealing the highest rates in late winter when Fairbanks experiences severe pollution and in summer when wildfires generate BrC. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Adsorption of organics on surfaces is important in both outdoor and indoor environments. Surfaces can serve as sinks for gas-phase species, act as reservoirs by emitting previously partitioned organics back into the gas phase, and can facilitate heterogeneous chemistry. We report here studies of the uptake and desorption energetics of gas-phase limonene, a volatile and widely-distributed monoterpene, on solid silica nanoparticles using a unique apparatus that allows for temperature programmed desorption (TPD) measurements of surface binding energies as well as Knudsen cell gas uptake measurements. A multiphase kinetic model was applied to these data to provide additional molecular-level understanding of the processes involved. TPD experiments yielded an average desorption energy of 47.5 ± 8.2 kJ mol-1 (±1s, sample standard deviation), the first direct experimental measurement of this parameter over a broad temperature range (150–320 K). Initial net uptake coefficients (0,net) range from (1.7 ± 0.3) ×10-3 (±1s) at 210 K to (2.3 ± 0.4) ×10-4 (±1s) at 250 K, reflecting increased rates of desorption with an increase in temperature combined with increased rates of diffusion and re-adsorption within the pores between adjacent silica nanoparticles. Effective Langmuir constants, which also reflect the effects of pore diffusion and re-adsorption, were determined from the uptake data and vary from (1.8–0.3)×10-13 cm3 molecule-1 over the same temperature range. These results are in excellent agreement with previous studies around room temperature and with theoretical calculations of the energetics of the limonene-silica interaction. The strong attraction between limonene and the polar silica surface shows the importance of including such interactions in models of the atmospheric fates of terpenes both indoors and outdoors. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  6. Abstract. Secondary organic aerosol (SOA) derived from n-alkanes, as emitted from vehicles and volatile chemical products, is a major component of anthropogenic particulate matter, yet the chemical composition and phase state are poorly understood and thus poorly constrained in aerosol models. Here we provide a comprehensive analysis of n-alkane SOA by explicit gas-phase chemistry modeling, machine learning, and laboratory experiments to show that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our study underlines the complex interplay of molecular composition and SOA viscosity: n-alkane SOA with a higher carbon number mostly consists of less functionalized first-generation products with lower viscosity, while the SOA with a lower carbon number contains more functionalized multigenerational products with higher viscosity. This study opens up a new avenue for analysis of SOA processes, and the results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA formation in large-scale atmospheric models. 
    more » « less
  7.  
    more » « less